TRANSMISSÕES MECÂNICAS

FÓRMULAS E DICAS

Nosso objetivo ao preparar este formulário foi o de facilitar o trabalho de todos que se vêem à frente do desenvolvimento de atividades que envolvem transmissões mecânicas.

Esperamos que quem vier a utilizá-lo tenha sucesso e maior agilidade nos seus projetos.

Eng. Rodolpho Wilmers

SUMÁRIO

- 1. Funções trigonométricas
- 2. Triângulos
- 3. Cálculo de área e perímetro
- 4. Cálculo de volumes, áreas laterais, áreas totais
- 5. Unidade de medida do Sistema Internacional (SI)
- 6. Símbolos e unidades de medida conforme SI
- 7. Fórmulas básicas
- 8. Resistência de materiais
- 9. Expansão térmica extensão
- 10. Rodas dentadas
- 11. Direção da inclinação da hélice
- 12. Mecanismo de parafuso sem-fim
- 13. Características elétricas de um motor trifásico
- 14. Fatores de serviço
- 15. Aplicações

1. Funções trigonométricas

a) Relações trigonométricas

$$sen^2 \alpha + cos^2 \alpha = 1$$

sen
$$\alpha = \sqrt{1 - \cos^2 \alpha} = \operatorname{tg} \alpha / \sqrt{1 + \operatorname{tg}^2 \alpha}$$

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = 1 / \sqrt{1 + tg^2 \alpha}$$

$$tg \alpha = sen \alpha/cos \alpha$$

ctg
$$\alpha$$
 = cos α /sen α = 1/tg α

$$tg \alpha = sen \alpha / \sqrt{1 - sen^2 \alpha}$$

$$\sec \alpha = 1/\cos \alpha$$

$$cosec \alpha = 1/sen \alpha$$

b) Relações entre dois ângulos

sen
$$(\alpha \pm \beta)$$
 = sen α cos β \pm cos α sen β

$$\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \pm \sin \alpha \sin \beta$$

$$tg (\alpha \pm \beta) = (tg \alpha \pm tg \beta) / (1 \pm tg \alpha tg \beta)$$

c) Multiplo e submúltiplo de um ângulo

sen 2
$$\alpha$$
 = 2 sen α cos α

$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1$$

11 38 62 28 54

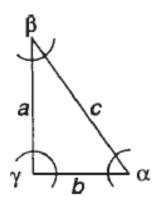
WWW.WTAENGENHARIA.COM.BR

tg 2
$$\alpha$$
 = 2 tg α / (1 - tg² α)

$$sen (\alpha/2) = \sqrt{(1 - \cos \alpha)/2}$$

$$\cos(\alpha/2) = \sqrt{(1 + \cos \alpha)/2}$$

$$tg(\alpha/2) = sen \alpha/(1 + cos \alpha)$$



2. Triângulos

A) Triângulo retângulo

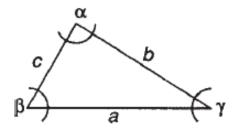
a e b catetos, c hipotenusa, ângulos α e β opostos aos catetos

(Teorema de Pitágoras)

$$\alpha + \beta = \pi / 2 \text{ rad.}$$

sen
$$\alpha$$
 = a / c; cos α = b / c; tg α = a / b; ctg α = b / a

$$a = c sen \alpha = c cos \beta = b tg \alpha$$


$$b = c cos α = c sen β = a tg β$$

$$a^2 + b^2 = c^2$$

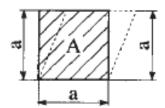
$$c = \sqrt{a^2 + b^2}$$

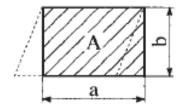
B) Triângulo obliquo

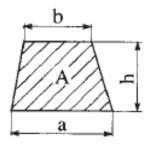
a, b, c os lados do triângulo; $\alpha,\,\beta,\,\gamma$ os ângulos oposição a eles, respectivamente

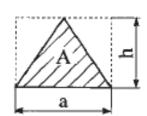
$$\alpha + \beta + \gamma = \pi \text{ rad} = 180^{\circ}$$

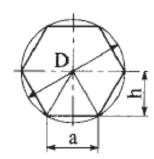
a / sen $\alpha = b$ / sen $\beta = c$ / sen γ
 $c^2 = a^2 + b^2 - 2$ a b cos γ






[4]




3. Cálculo de área e perímetro

11 38 62 28 54

WWW.WTAENGENHARIA.COM.BR

Quadrado, Losango

$$A = a^{2}$$

$$P = A \cdot a$$

Retângulo, Paralelogramo

$$A = a \cdot b$$

$$P = 2 \cdot (a + b)$$

$$a = P/2-b$$

Trapézio

$$A = (a + b)/2 \cdot h$$

$$a = 2 A/h-b$$

Triângulo

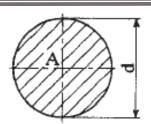
$$A = a \cdot h/2$$

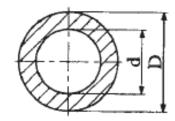
$$a = 2 \cdot A/h$$

$$h = 2 \cdot A/a$$

Hexágono

$$A = (a \cdot h/2).n = 3.a.h$$



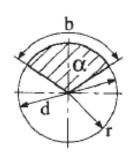


Círculo

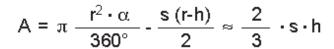
$$A = \frac{d^2 \cdot \pi}{4} = 0.7854 \cdot d^2;$$

$$P = d \cdot \pi; d = \sqrt{\frac{A}{0.7854}}$$

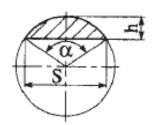
Anel circular



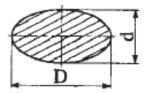
A =
$$\frac{\pi}{4}$$
 (D² - d²) = 0,7854 (D² - d²)


Setor circular

A =
$$\frac{b \cdot r}{2}$$
 = 0,7854 $\frac{d^2 \cdot \alpha}{360^\circ}$ = $\frac{\pi \cdot r^2 \cdot \alpha}{360^\circ}$


b =
$$\frac{\mathbf{r} \cdot \pi \cdot \alpha}{180^{\circ}}$$
; b = $\frac{\pi \cdot \mathbf{d} \cdot \alpha}{360^{\circ}}$; d = $\frac{360^{\circ} \cdot \mathbf{b}}{\pi \cdot \alpha}$

Segmento de círculo

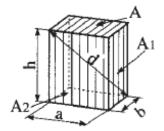


$$h = \frac{A \cdot 3}{S2} S = 2 \sqrt{h (2 r - h)}$$

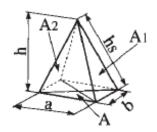
Elipse

A = 0,7854 D·d =
$$\frac{D \cdot d \cdot \pi}{4}$$
; P $\approx \frac{D + d}{2}$





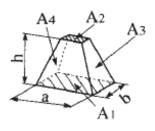
4. Cálculo de volumes, áreas laterais e áreas totais



$$V = a^3$$
; $d = a \cdot \sqrt{3}$
 $a = \sqrt[3]{V}$; $At = 6 \cdot a^2$; $Al = 4 \cdot a^2$

Prisma reto

V =
$$a \cdot b \cdot h = A \cdot h$$
; At = 2 (A + A₁ + A₂)
d = $\sqrt{a^2 + h^2 + b^2}$ Al = 2 (A₁ + A₂)



Pirâmide

$$V = \frac{1}{3} a \cdot b \cdot h = \frac{A \cdot h}{3};$$

$$At = A + 2 (A_1 + A_2)$$

$$hs = \sqrt{\left(\frac{a^2 + b^2}{4}\right) + h^2}$$

Tronco de pirâmide

$$V = \frac{h}{3} (A_1 + A_2 + \sqrt{(A_1 \cdot A_2)}) = \frac{A_1 + A_2}{2} \cdot h$$

$$At = A_1 + A_2 + 2 (A_3 + A_4)$$

$$Al = 2 \cdot (A_3 + A_4)$$

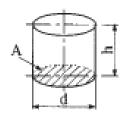
A = Área total

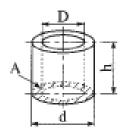
V = Volume

Al = Área lateral

H = Altura

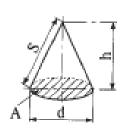
d = Diagonal





Cilíndro

$$V = A \cdot h = \frac{d^2 \cdot \pi}{4} \cdot h = 0,7854 \cdot d^2 \cdot h$$


$$Al = \pi \cdot d \cdot h$$

$$At = 2 A + d \cdot \pi \cdot h$$

Cilíndro vazado

$$V = A \cdot h = 0.7854 \cdot (D^2 - d^2) \cdot h$$

Cone

$$V = \frac{A \cdot h}{3} = \frac{d^2 \cdot 0,7854 \cdot h}{3};$$

$$AI = \pi \cdot r \cdot \sqrt{r^2 + h^2} = \pi \cdot r \cdot s$$

$$At = A + AI$$

Esfera

$$V = \frac{4}{3} \cdot \pi \cdot r^3 = \frac{d^3 \cdot \pi}{6} = 0,5236 \cdot d^3$$

At =
$$\pi \cdot d^2$$
; $d = \sqrt{\frac{6 \cdot V}{\pi}}$

A = Área da base At = Área total

Al = Área lateral

5. Unidades de medida – Sistema Internacional – Unidades basicas Grandezas Fundamentais

Grandeza	Símbolo	Denominação
Comprimento	М	Metro
Massa	Kg	Quilograma
Tempo	S	Segundo
Intensidade de corrente elétrica	Α	Ampere
Temperatura termodinâmica	K	Kelvin
Intensidade luminosa	cd	candela

Múltiplos e submúltiplos decimais das unidades

Potência de dez	Prefixo	Símbolo
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	М
10 ³	Quilo	k
10 ²	Hecto	h
10	Deca	da
10 ⁻¹	Deci	d
10 ⁻²	Centi	С
10 ⁻³	Mili	m
10 ⁻⁶	Micro	μ
10 ⁻⁹	Nano	n
10 ⁻¹²	Pico	р

Grandezas derivadas

newton (N)

Força que imprime a um corpo de massa 1kg a aceleração de 1 m/s²

pascal (Pa)

Pressão da força de 1N sobre uma superfície de área 1 m². Também usada a unidade bar (1 bar = 10^5 Pa)

joule (J)

Trabalho de uma força de 1N na direção do deslocamento de 1m

watt (W)

Potência que produz um trabalho de 1J em 1s

coulomb (C)

Carga elétrica que em 1s atravessa um condutor com uma corrente de 1A

volt (V)

Diferença de potencial entre duas seções de um condutor com uma corrente de 1A, que dissipa 1W de potência

farad (F)

Capacidade de um condensador na qual a transferência de 1C de uma armadura a outra determina uma diferença de potencial de 1V

ohm (Ω)

Resistência elétrica da seção de um condutor que gera uma diferença de potencial de 1V se a corrente é de 1A

weber (Wb)

Fluxo de indução magnética (1Wb = 1V.s)

tesla (T)

Indução magnética (1T = 1Wb / m²)

henry (H)

Indutância (1H = 1V.s / A)

6. Simbolos e unidades de medida segundo o SI utilizados na técnica das transmissões mecânicas

Símbolo	Significado	Símbolo da unidade
Simbolo	Significado	conforme SI
Geometria		
Α	Superfície	m ²
а	Distância	m
αβγ	Ângulo	rad
b	Largura	m
d	Espessura	m
d	Diâmetro	m
h	Altura	m
I	Comprimento	m
r	Raio	m
s	Espaço	m
V	Volume	m ³
Tempo		
а	Aceleração	m/s²
α	Aceleração angular	rad/s ²
f	Frequencia	Hz
g	Aceleração da gravidade	m/s²
n	Velocidade de rotação	1/s
ω	Velocidade angular	rad/s
T	Constante de tempo	S
t	Tempo	S
V	Velocidade	m/s

Símbolo	Significado	Símbolo da unidade conforme SI
Mecânica		
E	Módulo de elasticidade	MPa
F	Força	N
G	Peso	N
J	Momento de inércia	kgm²
М	Torque	Nm
m	Massa	kg
Р	Potência	W
Р	Pressão	Pa
Q	Massa específica	kg/m³
σ	Solicitação de tração,	Pa
· ·	compressão, flexão	
W	Trabalho, energia	J
η	Rendimento	-
μ	Coeficiente de atrito	-

Definições importantes

1 Newton (N) = 1kgm/s² Força 1 quilograma peso (kp) = 9,80665 N Força 1 cavalo vapor (CV) = 735,5 W = 75 kgm/s Potência

1 horse power (HP) = 745,7 W Potência 1 Wh/3600 = 1 Nms = 1 Joule (J) Trabalho

g = 9,80665 m/s² Aceleração da gravidade

Fórmulas Básicas na técnica de transmissão

_	~
Irane	2020
Trans	Iacau

$$s = v \cdot t$$

$$V = \frac{S}{t}$$

$$\varphi = \omega t = 2\pi \cdot n \cdot t$$

$$v = d\pi n = \omega r$$

$$\omega = \dot{\phi} = 2\pi n = \frac{v}{r}$$

$$\dot{\omega} = \dot{\varphi} = \frac{\omega}{t}$$

$$F = m \cdot a$$

 $a = \frac{v}{t}$

$$M = F \cdot r$$

$$M = J \cdot \omega$$

$$P = F \cdot v$$

Potência (W)

$$P = M \cdot \omega$$

$$W = F \cdot S$$

Energia (J)

$$W = M \cdot \varphi$$

$$W = \frac{1}{2} mv^2$$

Energia (J)

$$W = \frac{1}{2} J\omega^2$$

Símbolos e Descrições

M = Torque de pico ou total do motor (Nm)

M_L = Torque resistente (Nm)

M_a = Torque de aceleração (Nm)

M_{fr} = Torque de frenagem (Nm)

P = Potência total do motor (kW)

P_L = Potência em condição de regime (kW)

Pa = Potência de aceleração (kW

n = Velocidade de rotação (min-1)

Δn = Diferença de rotação (min⁻¹)

v = Velocidade linear (m/min)

Δv = Diferença de velocidade (m/min)

J = Inércia (kgm²)

M = Massa (kg)

F = Força (N)

W = Energia (J)

t_a = Tempo de aceleração (s)

t_{fr} = Tempo de frenagem (s)

s = Espaço (m)

d = Diâmetro (mm)

r = Raio (mm)

μ = Coeficiente de atrito

p = Pressão (N/m² ou Pa)

 $g = 9,80665 \text{ m/s}^2$

 $\pi = 3,141592654$

Velocidade Linear (m/min)

$$v = \frac{d \cdot \pi n}{1000}$$

$$F = 1000 \frac{M}{r} = \mu \cdot m \cdot g$$

$$M = \frac{F \cdot r}{1000}$$

$$M = \frac{3 \cdot 10^4 \, P}{\pi \cdot n} = \frac{9549 \, P}{n}$$

$$W = F \cdot s = m \cdot g \cdot s$$

$$W = \frac{m v^2}{7200}$$

$$W = \frac{\pi^2}{1800} \qquad J n^2 = \frac{J n^2}{182,4}$$

$$J n^2 = \frac{J n^2}{182,4}$$

$$W = \frac{\pi}{30} \cdot 10^3 \,\mathrm{M} \cdot \mathrm{n} = \frac{\mathrm{M} \cdot \mathrm{n}}{9549}$$

$$P = \frac{F \cdot V}{6 \cdot 10^4}$$

$$P = \frac{m \cdot g \cdot v}{6 \cdot 10^4}$$

Definições importantes

$$u = \frac{n_1}{n_2} = \frac{M_2}{M_1} = \sqrt{\frac{J_2}{J_1}}$$
 Relação de transmissão

$$M = M_L + M_a = M_L + \frac{\pi}{30} J \frac{\Delta n}{t_a}$$

$$M_a = \frac{\pi}{30} J \frac{\Delta n}{t_a} = 0,105 J \frac{\Delta n}{t_a}$$

Sabendo que

$$n = \frac{1000 \text{ V}}{\text{V} \cdot \pi}$$

$$M_a = \frac{100}{3d} J \frac{\Delta V}{t_a}$$

$$W = \frac{\pi^{a}}{1800} J \Delta n^{2} \frac{M}{M - M_{L}} = \frac{J \Delta n^{2} M}{182,4 (M - M_{L})}$$

$$W = \frac{5000}{9} J \frac{\Delta v^2}{t^2} \frac{M}{M - M_1}$$

$$P = P_L + P_a$$

Potência em aceleração (kW)

$$P_{L} = \frac{\pi \cdot v \cdot n \cdot M_{L}}{3 \cdot 10^{4}} = \frac{n \cdot M_{L}}{9549} = \frac{V \cdot M_{L}}{30 \cdot d}$$

Na frenagem os símbolos Δ e M_a devem ser modificados

$$P_{L} = \frac{\pi^{2} \cdot n}{9 \cdot 10^{5}} J \frac{\Delta n}{t_{a}} = \frac{n J \Delta n}{9,12 \cdot 10^{4} \cdot t_{a}}$$

$$P_a = \frac{10 \cdot v}{9 \cdot d^2} J \frac{\Delta n}{t_a} = \frac{m \cdot v \cdot \Delta v}{7,2 \cdot 10^6 t_a}$$

Tempo de aceleração

$$t_a = \frac{\pi}{30} J \frac{\Delta n}{M - M_L} = 0,105 J \frac{\Delta n}{M - M_L} = \frac{100}{3d} \frac{\Delta n}{M - M_L}$$

$$t_a = \frac{\pi^2 n \, J \Delta n}{9 \cdot 10^5 \, (P - P_1)} = \frac{n \, J \, \Delta \, n}{9,12 \cdot 10^4 \, (P - P_1)}$$

$$t_a = \frac{J \cdot \Delta n}{9,55 \cdot M_a}$$
; $t_a = \frac{J \cdot \Delta n}{9,55 \cdot M_{fr}}$

Movimento horizontal em aceleração

$$P = \frac{m v}{6 \cdot 10^4} \left[\mu \cdot g + \frac{\Delta v}{60 t_a} \right]$$

A = Superfície da secção em mm-²

σ = Resistência a flexão ou tração em N/mm²

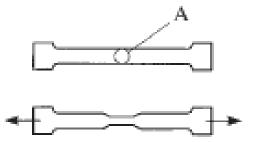
τ = Resistêncnia ao cizalhamento ou a torção em N/mm²

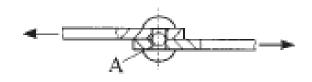
F = Força (N)

M = Momento (Nm)

Wb = Módulo de resistência a flexão em mm2

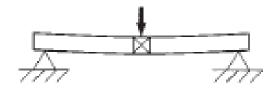
Wt = Módulo de resistência a torsão em mm²




8. Resistência dos Materiais

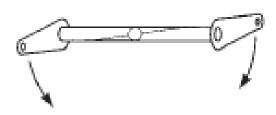
Resistência a tração

$$\sigma = \frac{F}{A}$$
 $F = \sigma.A$



Resistência ao cisalhamento

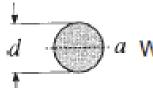
Resistência a flexão


$$\sigma = \underline{M}_{W_b} \qquad (N/mm^2)$$

Resistência a torsão

$$\tau = \underline{M} \qquad (N/mm^2)$$

$$W_t$$



Momento de inércia – Módulo de resistência

Módulo de resistência

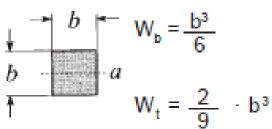
Módulo de inércia

$$a W_b = \frac{\pi}{32} \cdot d^3$$

$$I_a = \frac{\pi}{64} \cdot d^4$$

$$W_t = \frac{\pi}{16} \cdot d^3$$

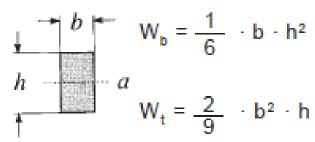
$$I_p = \frac{\pi}{32} \cdot d^4$$



$$W_b = \frac{\pi}{32} \cdot (d^4 - d_0^4)/d$$
 $I_a = \frac{\pi}{64} \cdot (d^4 - d_0^4)$

$$I_a = \frac{\pi}{64} \cdot (d^4 - d_0^4)$$

$$W_t = \frac{\pi}{16} \cdot (d^4 - d_0^4)/d$$
 $I_a = \frac{\pi}{32} \cdot (d^4 - d_0^4)$


$$I_a = \frac{\pi}{32} \cdot (d^4 - d_0^4)$$

$$W_b = \frac{b^3}{6}$$

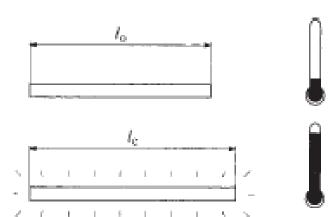
$$W_t = \frac{2}{9} \cdot b^3$$

$$I_a = \frac{b^4}{12}$$

$$W_b = \frac{1}{6} \cdot b \cdot h^2$$

$$W_t = \frac{2}{9} \cdot b^2 \cdot h$$

$$I_a = \frac{h^3 b}{12}$$



9. Expansão térmica - Alongamento

Alongamento

$$I_v = \alpha \cdot I_0 (t_2 - t_1)$$

Comprimento final

$$I_r = I_0 (1 + \alpha \cdot \Delta T)$$

$$I_0 = \frac{I_V}{\alpha \cdot \Delta T}$$

$$\Delta T = \frac{I_v}{\alpha \cdot I_o}$$

= Alongamento

Comprimento inicial

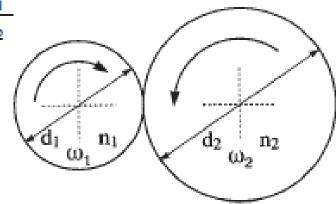
L = Comprimento final

∆t = Diferença de temperatura (°K)

☐ Coeficiente de dilatação térica por 1 grau

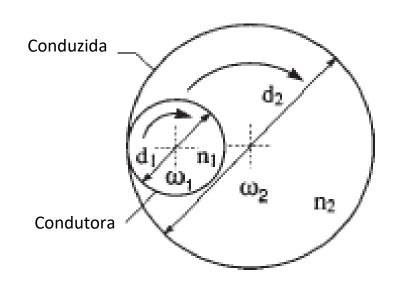
Coeficiente de dilatação térmica por 1K e unidade de comprimento

Alumínio	0,000024
Bronze	0,000018
Vidro	0,000009
Ferro fundido cinzento	0,000011
Cobre	0,000017
Magnésio	0,000025
Bronze	0,000019
Aço	0,000012


10. Rodas Dentadas

A relação de transmissão entre uma roda condutora de diâmetro d_1 , e uma roda conduzida de diâmetro d_2 , é dada pelos diâmetros d_1 , e d_2 e se indica pela letra u

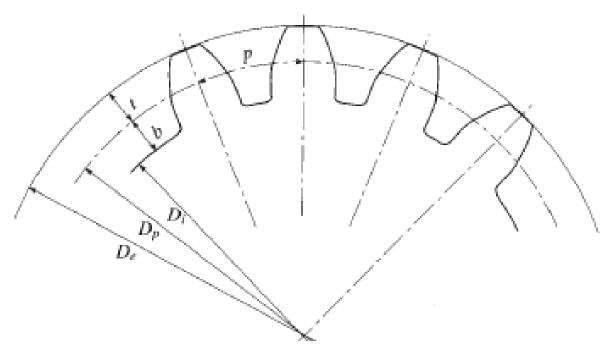
$$u = \frac{d_2}{d_1} = \frac{n_1}{n_2} = \frac{\omega_1}{\omega_2}$$


Nas rodas de engrenagens

$$u = \frac{Z_2}{Z_1}$$

Sendo

 n_1 = velocidade angular, em rev / min da roda motora n_2 = velocidade angular, em rev / min da roda movida $\omega 1$ = velocidade angular, em rad / s da roda motora $\omega 2$ = velocidae angular, em rad / s da roda movida z_1 = número de dentes da roda motora z_2 = número de dentes da roda movida Quando u>1, o conjunto é redutor, quando u<1, é multiplicador



Elementos de uma roda dentada cilindrica de dentes retos com perfil de evolvente do círculo

z = número de dentes da roda m = módulo em mm D_e = diâmetro externo em mm D_i = diâmetro interno em mm α = ângulo de pressão

p = potencia (kW)

t = adendo do dentes em mm b = dedendo do dente em mm D_p = diâmetro rimitivo em mm p = passo em mm r = raio primitivo (mm) n = giros por minuto (min⁻¹)

Relação entre os elementos de uma roda cilindrica dentada de dentes retos

$$m = \frac{D_p}{z}$$
 [mm]

$$D_p = m \cdot z$$
;

$$z = \frac{D_p}{m}$$

$$p = \frac{\pi D_p}{Z} [mm]$$

$$\frac{p}{\pi} = \frac{D_p}{Z} = m [mm]$$

$$p = \pi m [mm]$$

[22]

Força através do torque de uma roda dentada cilíndrica de dente retos

A força tangencial T é o componente da força F atuando na direção da tangente comum aos dois circuitos primitivos, e a rotação da roda deve-se a ela A força radial R é uma componente da força F e é orientada diretamente ao centro da roda, sendo normal a seu eixo

$$T = \frac{9550 \text{ P}}{\text{r n}}$$
 [N]; $R = T \text{ tga}$ [N]; $F = \frac{T}{\cos \alpha}$ [N] $M = \frac{9550 \text{ P}}{\text{n}}$ [Nm]

Principais relações entre os elementos de uma roda cilindrica dentada com dentes helicoidais

z = número de dentes

p_c = passo cincunferencial

 p_n = passo normal

p_a = passo axial

p_e = passo da hélice

m_c = módulo circunferencial

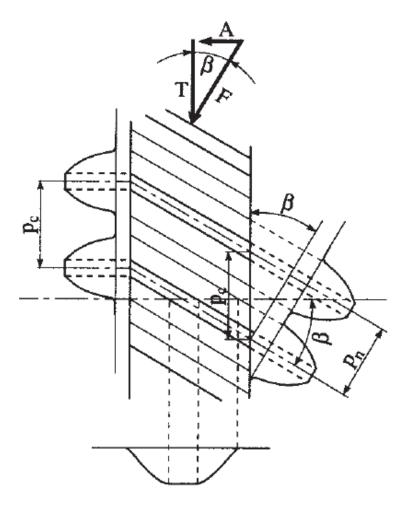
 $m_n = m\'odulo normal$

m_a = módulo axial

α = ângulo de pressão

β = ângulo de hélice

 $Dp = m_c z$


 $p_c = p_n/cos\beta$

 $p_n = p_c.cos\beta$

 $p_n = \pi m_n$

 $p_c = \pi m_c$

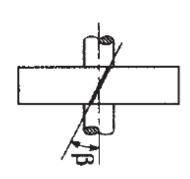
Força através de uma roda cilindrica com dentes helicoidas de eixos paralelos

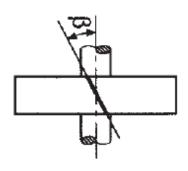
$$T = \frac{9550 P}{r n}$$

$$A = T tg \beta$$

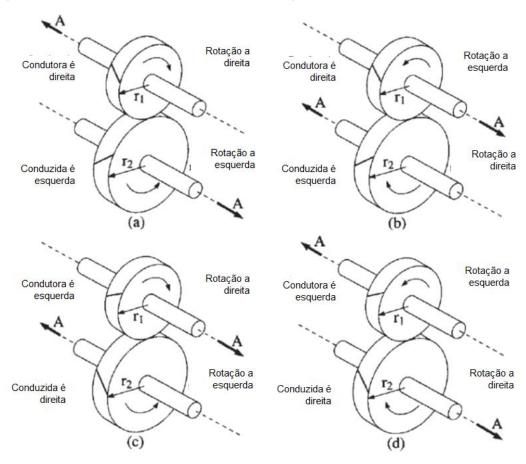
$$F = \frac{T}{\cos \beta}$$

A = T tg
$$\beta$$
 F = $\frac{T}{\cos \beta}$ R = $\frac{T tg \alpha}{\cos \beta}$



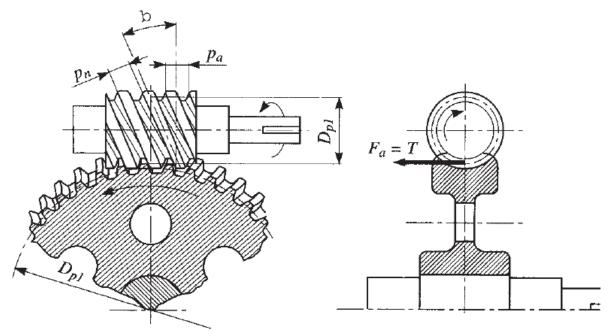

11. Direção da inclinação da hélice

Uma engrenagem com dentes helicoidais tem hélice a direita quando, olhando-se de perfil, com o eixo na vertical, o dente se orienta para a direita, e tem hélice a esquerda se o dente se orienta para a esquerda.


Hélice a direita

Hélice a esquerda

O sentido da força a depende do sentido de rotação das rodas e do sentido de inclinação da hélice, de acordo com o seguinte esquema:



12. Mecanismo de parafuso sem fim

P_n = passo normal da rosca sem fim e da roda, em mm

P_a = passo axial da rosca sem fim igual ao passo circunferencial da roda, em mm

P_e = passo da hélicel da rosca sem fim, em mm

m_n = módulo normal, em mm

may = módulo axial da rosca sem fim igual ao módulo circunferencial da roda, em mm

β = ângulo de inclinação da hélice da rosca sem fim e da roda

D_{p1} = diâmetro primitivo da rosca sem fim, em mm

 D_{p2} = diâmetro primitivo da roda, em mm

i = número de entradas da rosca sem fim

α = ângulo de pressão

z = número de dentes da roda

Relações entre os elementos de um mecanismo entre uma rosca sem fim e uma roda helicoidal

$$\begin{split} p_n &= \pi \ m_n \\ p_a &= \frac{\pi \ m_n}{\cos \beta} \ = \frac{p_n}{\cos \beta} \ ; \ p_e = \frac{p_n i}{\cos \beta} \ ; \ d_1 = \frac{m_n i}{\sin \beta} \ ; \ d_2 = \frac{m_n z}{\cos \beta} \end{split}$$

Relação de transmissão

$$u = \frac{z}{i}$$

Força transmitida através da rosca sem fim e da roda helicoidal

Força tangencial da rosca sem fim aplicada sobre a circunferencia primitiva, igual a força axial da roda

$$T = \frac{9550 \text{ P}}{\text{r n}}$$
 = Axial da roda, em N = tangencial da rosca sem fim

$$R = \frac{T \operatorname{tg} \alpha}{\operatorname{tg} \beta} = \operatorname{Radial} \operatorname{da} \operatorname{roda} \operatorname{e} \operatorname{da} \operatorname{rosca} \operatorname{sem} \operatorname{fim}$$

$$A = \frac{T}{tg \beta} = Tangencial da roda = axial da rosca sem fim$$

13. Características elétricas de motores trifásicos

$$P_{abs} = \frac{\sqrt{3 \cdot U \cdot I \cdot \cos \varphi}}{1000}$$

$$\mathsf{P}_{\mathsf{del}} = \frac{\sqrt{3 \cdot \mathsf{U} \cdot \mathsf{I} \cdot \mathsf{cos} \, \varphi \cdot \eta}}{1000}$$

P = potencia em kW

U = tensão em V

I = corrente por fase em A

cosφ = fator de potencia

 η = rendimento do motor

Velocidade de sincronismo de um motor elétrico trifasico

$$n_o = 60 \frac{f}{p} = 120 \frac{f}{2p}$$

$$n = n_o (1 - s) = 60 \frac{f}{p} (1 - s)$$
 $p = no de pares de po$
 $2p = número de polos$

n_o=velocidade sincrona (min⁻¹)

n = velocidade nominal (min⁻¹)

f = frequencia em Hz

p = no de pares de polos

s = escorregamento

$$s = \frac{n_o - n}{n_o}$$

2p	f= 50 Hz	f= 60 Hz	f= 100 Hz	f= 200 Hz	f= 400 Hz	р
2	3000	3600	6000	12000	24000	1
4	1500	1800	3000	6000	12000	2
6	1000	1200	2000	4000	8000	3
8	750	900	1500	3000	6000	4
10	600	720	1200	2400	4800	5
12	500	600	1000	2000	4000	6

14. Fatores de Serviço AGMA

FATORES DE SERVIÇO					
		Classi	ficação de C	argas	
Acionamento por	Tempo de Trabalho	Uniforme U	Choques Moderados M	Choques Fortes F	
Motor elétrico ou Turbina a vapor	Intermitente, 3 h/dia	0,80	1,00	1,50	
	3 < Tempo ≤ 10 h/dia	1,00	1,25	1,75	
	Tempo > 10 h/dia	1,25	1,50	2,00	
Motor a Explosão	Intermitente, 3 h/dia	1,00	1,25	1,75	
ou Motor Hidráulico	3 < Tempo ≤ 10 h/dia	1,25	1,50	2,00	
	Tempo > 10 h/dia	1,50	1,75	2,25	

FATOR DE TEMPERATURA PARA REFRIGERAÇÃO POR CONVECÇÃO							
Temperatura		CICLO DE	TRABALHO I	POR HORA			
Ambiente °C	100%	80%	60%	40%	20%		
10	1,30	1,55	1,80	2,05	2,30		
20	1,15	1,35	1,60	1,80	2,05		
30	1,00	1,20	1,40	1,60	1,80		
40	0,85	1,05	1,20	1,40	1,55		
50	0,70	0,85	1,10	1,15	1,30		
FATOR DE	TEMPERATU	RA PARA RE	FRIGERAÇÃO	POR VENTI	LADOR		
10	1,20	1,45	1,70	1,95	2,2		
20	1,10	1,35	1,55	1,80	2,00		
30	1,00	1,20	1,40	1,60	1,80		
40	0,90	1,05	1,25	1,40	1,60		
50	0,80	0,95	1,10	1,25	1,40		

A tabela de Classificação de Cargas AGMA foi pensada de forma a informar:

- A aplicação, ou seja, qual a máquina que esta sendo considerada;
- O tipo de Carga que NORMALMENTE essa máquina suporta; e
- A Classe, que é considerada em função da carga e do tempo de trabalho.

Carga

U – UniformeM – Choques ModeradosF – Choques Fortes

Classe

Tempo de Trabalho ≤ 10 h/dia Tempo de Trabalho > 10 h/dia

Classe I – Fator de Serviço = 1,00 Classe II – Fator de Serviço = 1,50 Classe III – Fator de Serviço = 2,00

Classificação de Cargas Conforme AGMA

A-H	Tipo Classe			Tipo	Classe		4-11	Про	Classe			
Aplicação	de Caron	Ati 10h/dh	Hele de 186/ dis	Aplicação	de	Alé 10k/dle	Hulo do 186/ de	Aplicação	de	Atá 106/40-	Nob Holo de h/dlo 10h/ di	
GTTADORES	Jan ya			EIXO PRINCIPAL	Jan ya			TRANSPORTADORES	Jan ya			
VGI TADORES Historadores para papal	ا ا		l	DE ACTONAMENTO				UNIFORMEMENTE				
restec)	M	п	п	- Uniformementa carregado.	u	ı	п	CARREGADOS OU				
Liquidos pures	U	1	п	- Serviço pessido	Ă	l fi l	ii	ALIMENTADOS		_	l	
Semi-Liquidos com ensidade variável	M	п	п	GRELHA MECÂNICA			11	- De correla	ı i	ï	□ Ⅲ	
LIMENTÍCIA				GUINDASTES E				- Aéreo	Ÿ	Ŧ	H	
Enistadores	U	1	п	QUINCHOS				- Bolos	g I	Ī	#	
Cosinhedores de	ŭ	ī	I II	- Dealocemento de ponte ou	м	п	11	- Rosco	۷ w	r elderung	. "	
reals Misturadores de	- 1	-		CBF90							1	
0000	M	п	п	- Cagamba	м	п	11	TRANSPORTADORES SERVICO PERADO,				
Moedores	M	п	п	LAVANDERIA			**	NÃO UNIFORMEMENTE				
Cortedores	M	п	111	- Lavadoras	м	i ii l	m	ALIMENTADOS				
OMBAS				MÁQUINA DE		"		- Pers linhes de montagem	M	II	ш	
Alternativas (reciprocas) a descarga aberta	U	1	п	ENCHER				- De correia		#	I #	
upin Aclio				- Laine	U	l ı l	п	- Adress	Ж		買	
Huldclindricas	м	п	ш	MÁQUINAS	-	*		- De roics	12	ii.	Ħ	
Honodiindrices		**	**	OPERATRIZES				- Reciproco (alternativo)	2	₩	ΙŴ	
Proporcionals stativas (de engranagens)			**	- Actoremento auditer	U	I	п	- Resca	M w	r elderum	, II	
xetivas (de engrenegens) Densklede constanta	u	1	п	Actonemento principal	М	ıπ	ш		"		Ĩ.	
Densklade varlävel	M	ıπ	i ii i	uniformamenta carregado - Serviço pesado	F	<u> </u>	ш	TRANSPORTADORES				
ORRACHA				MISTURADORES				AÉREOS				
Miguine de fabricação de	м	п	п	(VER AGITADORES)				- Uniformemente	U	п	п	
wi			"	Concreto				cerregados	м	11	п	
Freness abridoras de Mus e tubos	U	1	1	- Servigo continuo	н	п	ш				-	
ABECOTES DE				- Serviço Intermitente - Densidade constante - Densidade vantival	RECECES	∄	###	TRANSPORTADORES DE LINHAS DE				
UILHOTINA		**	**	- Deneidade veriével	Ă	#	詌	MONTAGEM				
				- Uquides	и	<u>1</u>	#	- Uniformemente cerregedos	M	1	ш	
AÇAMBA				- Semi-Squidoe	Ĥ	##	前	- Serviço pesado	M	п	=	
Treneportedores, serviço	M	п	п	MOINHOS				TRAMSPORTADORES				
Bevedores uniformemente	U	1	п	- Sciss	м	п	ш	DE CAÇAMBA			١	
erregades	-	•	ı 	PAPEL				- Serviço pesedo	м	11	=	
Blovedores, earviço usado	M	п	ш	- Agitadores (misturadores).	U	Ţ	Ħ	TRAMSPORTADORES				
ERÂMICA				- Brenqueedores	ř	<u></u> .	H	DE CORRETA				
Presente de titolo	F	ш	m	- Esticadoras para faitro	Ĭ	***	Ħ	- Uniformemente carregados - Serviço pesado	M	H	I₩	
Extrusores e misturadores.	M	Ī	III	- Erroledores	U		п	- sarrago passos			- ا	
ERVEJARIA E				PENEIRAS		_		TRAMSPORTADORES			l	
ESTILARIA				- Betedorse	M	H	쁖	PARA PORNOS - Uniformemente corregados		1	п	
Alimentadores, pertide	м	п	п	- Rotetives, pedres ou	_			- Serviço pesedo	M	Ĥ	##	
equents			"	pedrguilice	м	п	п					
Cocinhodores, serviço satinuo	U		п	SECADORES E				TRAMSPORTADORES DE ROLOS				
Héquines de engerrefer	U	1	п	AQUECEDORES	н	п	11	- Uniformemente cerregados	U	1	п	
Tachos de formenteção,	U		п	ROTATIVOS				- Serviço pesado		••	#	
rviço continuo Tinas de moste, serviço	ŭ		п	SIDERURGIA				TRANSPORTADORES				
etinuo			"	Transportador de mese				DE ROSCA			l	
LARIFICADORES	U	1	п	- Sam reversão	м	<u> </u>	m	- Uniformemente carregados	M I	1	ш	
								- Serviço pesado	M	Ñ	ΙÏ	
LASSIFICADORES	M	п	п	TELEPÉRICOS		•••	**	TREFILADORAS DE			l	
LEVADORES				TÉXTEL				ARAME E	м	п	ш	
Cacamba, uniformemente	u	1	п	- Calendres	¥	ш	표	APLAINADORAS	"			
erregados Serviça pasado		ıπ	##	- Hidaulana da Gas		- ш	##					
Escades relantes		***	**	- Máquines de tingimento - Tambores de secagem	1	▋▋	#	TĒXTIL - Vindons	_			
De carge	M	п	l II						F	ш		

^{*} Tipo de Cargas U - Uniforme

Chs.: Recomendames que a "classe de serviço" para aplicações especiais seja definida de comum acordo entre o fabricante e o cliente, quando verleções em relação à tabelo sejam necessários.

Entre es condições especiais citamos: tipos diferentes de méquina motriz, condições de pertida e parada, condições do ambiente, fubrificaçõe, sobrecarges, velocidades elevadas, aplicações com finito, carges com alta inérida e reversões.

CLASSIFICAÇÃO DE CARGAS CONFORME AGMA							
TIPOS DE APLICAÇÃO TEMPO DIÁRIO DE OPERAÇÃO CLASSE AGMA FATOR SERVIÇO							
SEM CHOQUES / POUCAS PARTIDAS	10 HORAS DIA	I	1,0				
VIBRAÇÕES	10 HORAS DIA	п	1,5				
SEM CHOQUES/POUCAS PARTIDAS	24 HORAS DIA	п	1,5				
CHOQUES FORTES/MUITAS PARTIDAS	10 HORAS DIA	ш	2,0				
VIBRAÇÕES	24 HORAS DIA	ш	2,0				

M - Chaques Haderedos

F - Chaques Fortes

15. Exemplos de cálculos de aplicações de redutores de velocidade

RESISTENCIA AO MOVIMENTO OU DESLOCAMENTO HORIZONTAL

SENTIDO DO DESLOCAMENTO

COEFICIENTE DE ATRITO: $\mu = F_G / P$

VALORES INDICADOS PARA μ

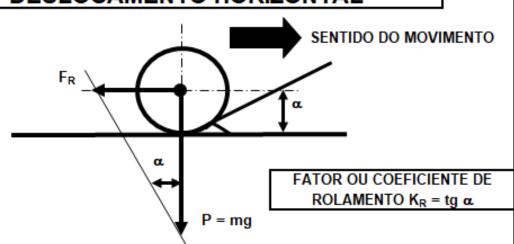
	MATERIAL		CONDIÇÕES DA Superfície	μο	μ	
1	aço ou inox / aço ou bronze		lubrificação estática lubrificação a pressão	0,11	0,1 0,05	
2	bronze / bronze		superfície sêca	0,45	0,2	
3	material ferro emborrachado / concreto concreto		superfície sêca superfície sêca superfície húmida	0,8	0,2 0,6 0,3	
4	ferro / ferro		lubrificado, sêco ou húmido	0,4	0,2	
5	couro ou papel / aço		sêco	0,65	0,25	

 μ_o Coeficiente de atrito de partida

μ COEFICIENTE DE ATRITO EM MARCHA

OS VALORES DOS COEFICIENTES DE ATRITO SÃO VALORES MÉDIOS, VÁLIDOS PARA SUPERFÍCIES LISAS

OS VALORES DOS COEFICIENTES DE ATRITO SÃO OBTIDOS POR EXPERIÊNCIA



RESISTENCIA AO MOVIMENTO OU DESLOCAMENTO HORIZONTAL

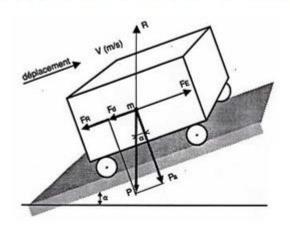
FATOR OU COEFICIENTE DE ROLAMENTO K_R CONFORME FEM - FEDERAÇÃO EUROPÉIA DE MANUTENÇÃO

CONFORME FEM - FEDERAÇÃO EUROPEIA DE MANUTENÇÃO									
DIAMETRO DA	ROLAMENTO AÇO /	ROLAMENTO	ROLAMENTO						
PISTA DE	AÇO	POLIURETANO /	BORRACHA / CIMENTO						
ROLAMENTO [mm]	nm] kg/T kg/T		kg / T						
100	14	84	98						
125	13	78	91						
160	12	72	84						
200	10	60	70						
250	9	54	63						
315	8	48	56						
400	7	42	49						
500	6	36	42						
630		36	42						

EXEMPLO: CARGA 10 T (TONELADAS) - RODA Ø 400 MM AÇO / PISTA AÇO

 $F_R = 10 \text{ T x } 7 = 70 \text{ kg}$

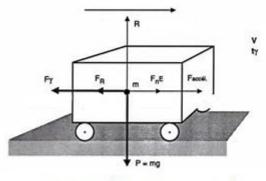
OS VALORES ACIMA PODEM SER AUMENTADOS EM FUNÇÃO DO AMBIENTE: FUNDIÇÃO, PROCESSADORES DE PRODUTOS EM PÓ, SIDERURGICAS, ETC.

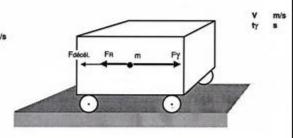


RESISTENCIA AO MOVIMENTO OU DESLOCAMENTO INCLINADO

FORÇA RESULTANTE DA FORÇA PESO NO SENTIDO DA INCLINAÇÃO: $F_d = m \cdot g \cdot \sin \alpha$

FORÇA DE RESISTÊNCIA AO ROLAMENTO: F_R = m . g . cos α . K_R


FORÇA DE ATRITO: $F_G = m \cdot g \cdot \cos \alpha \cdot \mu \cdot A$ $A = [\ N^O \ RODAS \ MOTORAS \] / [\ N^O \ TOTAL \ DE \ RODAS \]$


FORÇA NECESSÁRIA PARA DESLOCAR O CORPO: F_E ≥ F_d + F_R

RESISTENCIA AO MOVIMENTO OU DESLOCAMENTO HORIZONTAL

ACELERAÇÃO

DESACELERAÇÃO

ACELERAÇÃO: $\gamma = V / t_{\gamma} [m / s^2]$

FORÇA DE RESISTÊNCIA À ACELERAÇÃO $F_{\gamma} = m \gamma$

FORÇA DE ACELERAÇÃO $F_{ACEL} \ge F_{\tau}$

DESACELERAÇÃO desac = γ = V / t_γ

FORÇA DE DESACELERAÇÃO $F_{DECEL} = F_{\gamma} - F_{R}$

WWW.WTAENGENHARIA.COM.BR

RESISTENCIA AO MOVIMENTO OU DESLOCAMENTO HORIZONTAL

ACELERAÇÃO γ

PONTES ROLANTES E PÓRTICOS - CONFORME FEM

VELOCIDADE A		(A)		(B)		(C)	
ALCANÇAR		VELOCIDADE LENTA		VELOCIODADE MÉDIA E		VELOCIDADE RÁPIDA	
[m/s] [[m/min]	OU VELOCIDADE MÉDIA COM CURSO LONGO		RÁPIDA (APLICAÇÕES CORRENTES)		COM FORTES ACELERAÇÕES	
		t [seg]	a [m/s²]	t [seg]	a [m/s ²]	t [seg]	a [m/s²]
4,00	240			8,0	0,50	6,0	0,67
3,15	189			7,1	0,44	5,4	0,58
2,50	150			6,3	0,39	4,8	0,52
2,00	120	9,1	0,220	5,6	0,35	4,2	0,47
1,60	96	8,3	0,190	5,0	0,32	3,7	0,43
1,00	60	6,6	0,150	4,0	0,25	3,0	0,33
0,63	37,8	5,2	0,120	3,2	0,19		
0,40	24,0	4,1	0,098	2,5	0,16		
0,25	15,0	3,2	0,078				
0,16	9,6	2,5	0,064				·

