

Be More.

Turn That Great Design into a Powerful Solution

Slip Rings Electrical Theory & Testing Electrical Theory / Diagrams - EMI Final Tests – Product validation

Giorgio Balugani Mainz, 24 & 25 January 2018

Electrical Theory: Ohm's law

Electrical Theory: Electrical Power

$$P = I * V = \frac{V}{R} * V = \frac{V^2}{R}$$

Why power is so important?

Often, instead of current values, we know only the power value and the main voltage...

Electrical Theory: Ohm's with power

Voltage (V)

Ohm's Law: $V = I \times R$ In terms of power: $V = \sqrt{P \times R}$, $V = P \div I$

Current (I)

Ohm's Law: $I = V \div R$ In terms of power: $I = P \div V$, $I = \sqrt{P \div R}$

Resistance (R)

Ohm's Law: $R = V \div I$ In terms of power: $R = P \div I^2$, $R = V^2 \div P$

Power (P)

 $\mathbf{P} = \mathbf{I}^2 \times \mathbf{R}, \ \mathbf{P} = \mathbf{V}^2 \div \mathbf{R}, \ \mathbf{P} = \mathbf{V} \times \mathbf{I}$

Electrical Theory: Wire size

He wire we use two ways to identify the wire size:

- AWG (American Wire Gauge)
- Square mm [mm²]

Both are valid, nevertheless in EU we commonly use the square mm type Just for information, the relation between both surfaces :

$$A_n = rac{\pi}{4} d_n^2 = 0.000019635 ext{ inch}^2 imes 92^{rac{36-n}{19.5}} = 0.012668 ext{ mm}^2 imes 92^{rac{36-n}{19.5}}$$
 ,

Electrical Theory: Wire insulation

AWG				Polyethylen e Neoprene Polyurethan e Polyvinylchl oride (Semi- Rigid)	Polypropyle ne Polyethylen e (High Density)	Polyvinylch oride PVC (Irradiated) Nylon	Kynar (135° C) Polyethylen e (Crosslinke d) Thermoplas tic Elastomers	Kapton/Tefl on PTFE Silicone
Number	Ø [Inch]	Ø [mm]	Ø [mm ²]	80° C	90° C	105° C	125° C	200° C
2/0 = 00	0.365	9.26	67.4		283		355	370
1/0 = 0	0.325	8.25	53.5		245		305	325
1	0.289	7.35	42.4		211		265	280
2	0.258	6.54	33.6	170	180	200	225	240
3	0.229	5.83	26.7		158			
4	0.204	5.19	21.1	125	135	145	170	180
5	0.182	4.62	16.8		118			
6	0.162	4.11	13.3	95	100	105	125	135
7	0.144	3.66	10.5		89			
8	0.128	3.26	8.36	65	70	75	90	100
9	0.114	2.91	6.63		64			
10	0.102	2.59	5.26	47	55	58	70	75
								And in case of the local data and the local data an

Usually we use

PVC wire insulation to have a better safety factor and higher reliability

This allows to reach rated current values @ 105°C

Electrical Theory: Why shielding?

Metal or / metal-coated shells

> Peripheral (360°) contact between shells and braid

Although any conductor(s) slipped in a metallic sheat can be labelled as "shielded", there are two basic types of shielded cables: coaxial cables and shielded pairs or multipairs. Both types reduce the interference received.

Peripheral contact

between socket and shells

Electrical Theory: Series Circuits

With simple series circuits, all components are connected end-to-end to form only one path for electrons to flow through the circuit:

Series Circuits:

Voltage drops add to equal total voltage.

All components share the same (equal) current.

Resistances add to equal total resistance.

Electrical Theory: Series Circuits

Series Circuits:

What does it means on Deublin Slip Rings?

$$R_{equivalent} = R_1 + R_2 + R_3 + \dots$$

Slip Rings: Each connection add a resistance across the path

Electrical Theory: Parallel Circuits

With simple parallel circuits, all components are connected between the same two sets of electrically common points, creating multiple paths for electrons to flow from one end of the battery to the other:

Parallel Circuits:

All components share the same (equal) voltage.

Branch currents add to equal total current.

Resistances diminish to equal total resistance.

Electrical Theory: Parallel Circuits

Parallel Circuits:

What does it means on Deublin Slip Rings?

$$\frac{1}{R_{equivalent}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Slip Rings:

Multiple connections means lower contact resistance on conductor rings

Deublin drawings: Operating Parameters

SLIP RING OPERATING PARAMETERS											
ROTOR POSITION	STATOR POSITION	CHANNELS	MAX. VOLTAGE	CONTINUOUS CURRENT	MAX. CURRENT	MAX. TEMPERATURE	MAX. SPEED				
1	1	19	30VDC	1A	-		30 RPM				
2	2	18	30VDC	1A	-						
3	3	17	30VDC	1A	-						
4	4	16	30VDC	1A	-						
5	5	15	30VDC	1A	-						
6	6	1/	30VDC	1A	-						
6	6	14									
7	7	13	30VDC	1A	-						
8	8	12	30VDC	1A	-						
9	9	11	30VDC	1A	-						
14	14	10	290VAC	6 A	9A						
15	15	9	290VAC	6 A	9A	200 / . 000 C					
16	16	0	GROUND	8A	9A	-30"7 +80" [
16	16	0									
17	17	7	290VAC	6A	9A						
18	18	6	290VAC	6 A	9A						
19	19	5	290VAC	4 A	9A						
20	20	4	290VAC	4 A	9A						
21	21	2	290VAC	8A	9A						
21	21	2									
22	22	2	290VAC	8A	9A						
22	22	2									
23	23	1	2001/05	8A	9A						
23	23		290VAL								

Disturbances: EMI

Electromagnetic interference is abbreviated as EMI. EMI is the disturbance which is unintentionally generated by an external source that effects the electrical circuit by electromagnetic induction, electrostatic coupling or conduction. This is a particular problem with sensitive equipment where transmission signals may be corrupted or distorted.

Disturbances: EMI

- Ethernet cables must be shielded and the shield terminated to ground.
- Ring and brush of the slip ring is placed to help isolate the signals from other noise (power or other signals).
- Power rings and brushes are positioned with the case ground used to separate the power channels from the signal channels.
- Physical separation is added to reduce coupling between power and signals.

Testing: Deublin Approach

Testing: what's the difference between end of line test and evaluation testing?

End of line Test:

Those tests carried out on product out-of-production, before shipping

EvaluationTesting: Those tests carried out on prototypes, for validation purposes, before Start Of Production (SOP)

Testing: Deublin Facility

Testing: Deublin Capability

In Deublin Italiana we can manage more than 30 different tests according with operating instructions. Example of testing capability:

- Endurance Test
- Noise Test
- Stress check with strain gauges
- Current, voltage, resistance check
- Vibration
- HALT (Higly Accelerated Life Test)

Thank You! **Questions**?

